
prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 22.2.0

Hynek Schlawack

May 14, 2022

CONTENTS

1 User’s Guide 3

2 Project Information 9

3 Indices and tables 15

Index 17

i

ii

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

Release v22.2.0 (What’s new?).

prometheus-async adds support for asynchronous frameworks to the official Python client for the Prometheus metrics
and monitoring system.

Currently asyncio and Twisted on Python 3.7 and later are supported.

It works by wrapping the metrics from the official client:

import asyncio

from aiohttp import web
from prometheus_client import Histogram
from prometheus_async.aio import time

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

@time(REQ_TIME)
async def req(request):

await asyncio.sleep(1)
return web.Response(body=b"hello")

Even for synchronous applications, the metrics exposure methods can be useful since they are more powerful than
the one shipped with the official client. For that, helper functions have been added that run them in separate threads
(asyncio-only).

The source code is hosted on GitHub and the documentation on Read The Docs.

CONTENTS 1

https://github.com/prometheus/client_python
https://prometheus.io/
https://docs.python.org/3/library/asyncio.html
https://twisted.org
https://github.com/hynek/prometheus-async
https://prometheus-async.readthedocs.io/

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

2 CONTENTS

CHAPTER

ONE

USER’S GUIDE

1.1 Installation and Requirements

If you just want to instrument an asyncio-based application:

$ python -m pip install -U pip
$ python -m pip install prometheus-async

If you want to expose metrics using aiohttp:

$ python -m pip install -U pip
$ python -m pip install prometheus-async[aiohttp]

If you want to instrument a Twisted application:

$ python -m pip install -U pip
$ python -m pip install prometheus-async[twisted]

Warning

Please do not skip the update of pip, because prometheus-async uses modern packaging features and the installation
will most likely fail otherwise.

1.2 asyncio Support

The asyncio-related APIs can be found within the prometheus_async.aio package.

1.2.1 Decorator Wrappers

All of these functions take a prometheus_client metrics object and can either be applied as a decorator to functions and
methods, or they can be passed an asyncio.Future for a second argument.

coroutine prometheus_async.aio.time(metric: Observer)→ Callable[[Callable[P, R]], Callable[P, R]]
coroutine prometheus_async.aio.time(metric: Observer, future: Awaitable[T])→ Awaitable[T]

Call metric.observe(time) with the runtime in seconds.

Works as a decorator as well as on asyncio.Futures.

Returns coroutine function (if decorator) or coroutine.

3

https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

The most common use case is using it as a decorator:

import asyncio

from aiohttp import web
from prometheus_client import Histogram
from prometheus_async.aio import time

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

@time(REQ_TIME)
async def req(request):

await asyncio.sleep(1)
return web.Response(body=b"hello")

coroutine prometheus_async.aio.count_exceptions(metric: Incrementer, *, exc: type[BaseException] =
'BaseException')→ Callable[[Callable[P, R]],
Callable[P, R]]

coroutine prometheus_async.aio.count_exceptions(metric: Incrementer, future: Awaitable[T], *, exc:
type[BaseException] = 'BaseException')→
Awaitable[T]

Call metric.inc() whenever exc is caught.

Works as a decorator as well as on asyncio.Futures.

Returns coroutine function (if decorator) or coroutine.

coroutine prometheus_async.aio.track_inprogress(metric: Gauge)→ Callable[[Callable[P, R]],
Callable[P, R]]

coroutine prometheus_async.aio.track_inprogress(metric: Gauge, future: Awaitable[T])→
Awaitable[T]

Call metrics.inc() on entry and metric.dec() on exit.

Works as a decorator, as well on asyncio.Futures.

Returns coroutine function (if decorator) or coroutine.

1.2.2 Metric Exposure

prometheus-async offers methods to expose your metrics using aiohttp under prometheus_async.aio.web:

coroutine prometheus_async.aio.web.start_http_server(*, addr='', port=0, ssl_ctx=None,
service_discovery=None)

Start an HTTP(S) server on addr:port.

If ssl_ctx is set, use TLS.

Parameters

• addr (str) – Interface to listen on. Leaving empty will listen on all interfaces.

• port (int) – Port to listen on.

• ssl_ctx (ssl.SSLContext) – TLS settings

• service_discovery (ServiceDiscovery | None) – see Service Discovery

Return type MetricsHTTPServer

4 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://aiohttp.readthedocs.io/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ssl.html#ssl.SSLContext

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

Deprecated since version 18.2.0: The loop argument is a no-op now and will be removed in one year by the
earliest.

Changed in version 21.1.0: The loop argument has been removed.

prometheus_async.aio.web.start_http_server_in_thread(*, port=0, addr='', ssl_ctx=None,
service_discovery=None)

Start an asyncio HTTP(S) server in a new thread with an own event loop.

Ideal to expose your metrics in non-asyncio Python 3 applications.

For arguments see start_http_server().

Return type ThreadedMetricsHTTPServer

Warning

Please note that if you want to use uWSGI together with start_http_server_in_thread(), you have to tell uWSGI
to enable threads using its configuration option or by passing it --enable-threads.

Currently the recommended mode to run uWSGI with --master is broken if you want to clean up using atexit
handlers.

Therefore the usage of prometheus_sync.aio.web together with uWSGI is strongly discouraged.

async prometheus_async.aio.web.server_stats(request)
Return a web response with the plain text version of the metrics.

Return type aiohttp.web.Response

Useful if you want to install your metrics within your own application:

from aiohttp import web
from prometheus_async import aio

app = web.Application()
app.router.add_get("/metrics", aio.web.server_stats)
your other routes go here.

class prometheus_async.aio.web.MetricsHTTPServer(socket, runner, app, https)
A stoppable metrics HTTP server.

Returned by start_http_server(). Do not instantiate it yourself.

Variables

• socket – Socket the server is listening on. namedtuple of either (ipaddress.
IPv4Address, port) or (ipaddress.IPv6Address, port).

• https (bool) – Whether the server uses SSL/TLS.

• url (str) – A valid URL to the metrics endpoint.

• is_registered (bool) – Is the web endpoint registered with a service discovery system?

coroutine close()

Stop the server and clean up.

1.2. asyncio Support 5

https://uwsgi-docs.readthedocs.io/
https://uwsgi-docs.readthedocs.io/en/latest/Options.html#enable-threads
https://github.com/unbit/uwsgi/issues/1609
https://docs.python.org/3/library/atexit.html#module-atexit
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

class prometheus_async.aio.web.ThreadedMetricsHTTPServer(http_server, thread, loop)
A stoppable metrics HTTP server that runs in a separate thread.

Returned by start_http_server_in_thread(). Do not instantiate it yourself.

Variables

• socket – Socket the server is listening on. namedtuple of Socket(addr, port).

• https (bool) – Whether the server uses SSL/TLS.

• url (str) – A valid URL to the metrics endpoint.

• is_registered (bool) – Is the web endpoint registered with a service discovery system?

close()

Stop the server, close the event loop, and join the thread.

1.2.3 Service Discovery

Web exposure is much more useful if it comes with an easy way to integrate it with service discovery.

Currently prometheus-async only ships integration with a local Consul agent using aiohttp. We do not plan add more.

class prometheus_async.aio.sd.ConsulAgent(*, name='app-metrics', service_id=None, tags=(),
token=None, deregister=True)

Service discovery via a local Consul agent.

Pass as service_discovery into prometheus_async.aio.web.start_http_server()/
prometheus_async.aio.web.start_http_server_in_thread().

Parameters

• name (str) – Application name that is used for the name and the service ID if not set.

• service_id (str) – Consul Service ID. If not set, name is used.

• tags (tuple) – Tags to use in Consul registration.

• token (str) – A consul access token.

• deregister (bool) – Whether to deregister when the HTTP server is closed.

Custom Service Discovery

Adding own service discovery methods is simple: all you need is to provide an instance with a coroutine
register(self, metrics_server, loop) that registers the passed metrics_server with the service of your
choicer and returns another coroutine that is called for de-registration when the metrics server is shut down.

Have a look at our implementations if you need inspiration or check out the ServiceDiscovery typing.Protocol
in the types module

6 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/hynek/prometheus-async/blob/main/src/prometheus_async/aio/sd.py
https://docs.python.org/3/library/typing.html#typing.Protocol
https://github.com/hynek/prometheus-async/blob/main/src/prometheus_async/types.py

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

1.3 Twisted Support

The Twisted-related APIs can be found within the prometheus_async.tx package.

1.3.1 Decorator Wrappers

prometheus_async.tx.time(metric: Observer)→ Callable[[Callable[P, D]], Callable[P, D]]
prometheus_async.tx.time(metric: Observer, deferred: D)→ D

Call metric.observe(time) with runtime in seconds.

Can be used as a decorator as well as on Deferreds.

Works with both sync and async results.

Returns function or Deferred.

The fact it’s accepting Deferreds is useful in conjunction with twisted.web views that don’t allow to return a
Deferred:

from prometheus_client import Histogram
from prometheus_async.tx import time
from twisted.internet.task import deferLater
from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

class DelayedResource(Resource):
def _delayedRender(self, request):
request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def render_GET(self, request):
d = deferLater(reactor, 5, lambda: request)
time(REQ_TIME, d.addCallback(self._delayedRender))
return NOT_DONE_YET

prometheus_async.tx.count_exceptions(metric: Incrementer, *, exc: type[BaseException] = <class
'BaseException'>)→ Callable[P, C]

prometheus_async.tx.count_exceptions(metric: Incrementer, deferred: D, *, exc: type[BaseException] =
<class 'BaseException'>)→ D

Call metric.inc() whenever exc is caught.

Can be used as a decorator or on a Deferred.

Returns function (if decorator) or Deferred.

prometheus_async.tx.track_inprogress(metric: Gauge)→ Callable[P, C]
prometheus_async.tx.track_inprogress(metric: Gauge, deferred: D)→ D

Call metrics.inc() on entry and metric.dec() on exit.

Can be used as a decorator or on a Deferred.

Returns function (if decorator) or Deferred.

1.3. Twisted Support 7

https://twistedmatrix.com/documents/current/web/howto/web-in-60/index.html

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

1.3.2 Metric Exposure

prometheus_client, the underlying Prometheus client library, exposes a twisted.web.resource.Resource – namely
prometheus_client.twisted.MetricsResource – that makes it extremely easy to expose your metrics.

from prometheus_client.twisted import MetricsResource
from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

root = Resource()
root.putChild(b"metrics", MetricsResource())

factory = Site(root)
reactor.listenTCP(8000, factory)
reactor.run()

As a slightly more in-depth example, the following exposes the application’s metrics under /metrics and sets up a
prometheus_client.Counter for inbound HTTP requests. It also uses Klein to set up the routes instead of relying
directly on twisted.web for routing.

from prometheus_client.twisted import MetricsResource
from twisted.web.server import Site
from twisted.internet import reactor

from klein import Klein

from prometheus_client import Counter

INBOUND_REQUESTS = Counter(
"inbound_requests_total",
"Counter (int) of inbound http requests",
["endpoint", "method"]

)

app = Klein()

@app.route("/metrics")
def metrics(request):

INBOUND_REQUESTS.labels("/metrics", "GET").inc()
return MetricsResource()

factory = Site(app.resource())
reactor.listenTCP(8000, factory)
reactor.run()

8 Chapter 1. User’s Guide

https://github.com/prometheus/client_python#twisted
https://twistedmatrix.com/documents/current/api/twisted.web.resource.Resource.html
https://github.com/prometheus/client_python/blob/master/prometheus_client/twisted/_exposition.py
https://github.com/prometheus/client_python#counter
https://github.com/twisted/klein
https://twistedmatrix.com/documents/current/web/howto/web-in-60/index.html

CHAPTER

TWO

PROJECT INFORMATION

2.1 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Calendar Versioning.

The first number of the version is the year. The second number is incremented with each release, starting at 1 for
each year. The third number is when we need to start branches for older releases (only for emergencies).

prometheus-async has a very strong backwards-compatibility policy. Generally speaking, you shouldn’t ever be afraid
of updating.

Whenever breaking changes are needed, they are:

1. . . . announced here in the changelog.

2. . . . the old behavior raises a DeprecationWarning for a year (if possible).

3. . . . are done with another announcement in the changelog.

2.1.1 22.2.0 - 2022-05-14

Deprecated

• The prometheus_async.types.IncDecrementer Protocol is deprecated and will be removed in a year. It
was never a public API. #29

Changed

• Due to improvements of prometheus_client’s type hints, we don’t block them from Mypy anymore.

Fixed

• The type hints for prometheus_async.track_inprogress() now accept prometheus_client.Gauges.
#29

9

https://keepachangelog.com/en/1.0.0/
https://calver.org/
https://github.com/hynek/prometheus-async/pull/29
https://github.com/hynek/prometheus-async/pull/29

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

2.1.2 22.1.0 - 2022-02-15

Removed

• Support for Python 2.7, 3.5, and 3.6 has been dropped.

• The loop argument has been removed from prometheus_async.aio.start_http_server().

Added

• Added type hints for all APIs. #21

• Added support for OpenMetrics exposition in prometheus_async.aio.web.server_stats() and thus
prometheus_async.aio.web.start_http_server_in_thread(). #23

2.1.3 19.2.0 - 2019-01-17

Fixed

• Revert the switch to decorator.py since it turned out to be a very breaking change. Please note that the now-current
release of wrapt 1.11.0 has a memory leak so you should block it in your lockfile.

Sorry for the inconvenience this has caused!

2.1.4 19.1.0 - 2019-01-15

Changed

• Dropped most dependencies and switched to decorator.py to avoid a C dependency (wrapt) that produces func-
tions that can’t be pickled.

2.1.5 18.4.0 - 2018-12-07

Removed

• prometheus_client 0.0.18 or newer is now required.

Fixed

• Restored compatibility with prometheus_client 0.5.

10 Chapter 2. Project Information

https://github.com/hynek/prometheus-async/pull/21
https://openmetrics.io
https://github.com/hynek/prometheus-async/issues/23
https://github.com/GrahamDumpleton/wrapt/issues/128

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

2.1.6 18.3.0 - 2018-06-21

Fixed

• The HTTP access log when using prometheus_async.start_http_server() is disabled now. It was acti-
vated accidentally when moving to aiohttp’s application runner APIs.

2.1.7 18.2.0 - 2018-05-29

Deprecated

• Passing a loop argument to prometheus_async.aio.start_http_server() is a no-op and raises a
DeprecationWarning now.

Changed

• Port to aiohttp’s application runner APIs to avoid those pesky deprecation warnings. As a consequence, the loop
argument has been removed from internal APIs and became a no-op in public APIs.

2.1.8 18.1.0 - 2018-02-15

Removed

• Python 3.4 is no longer supported.

• aiohttp 3.0 or later is now required for aio metrics exposure.

Changed

• python-consul is no longer required for asyncio Consul service discovery. A plain aiohttp is enough now.

2.1.9 17.5.0 - 2017-10-30

Removed

• prometheus_async.aio.web now requires aiohttp 2.0 or later.

Added

• The thread created by prometheus_async.aio.start_http_server_in_thread() has a human-readable
name now.

2.1. Changelog 11

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

Fixed

• Fixed compatibility with aiohttp 2.3.

2.1.10 17.4.0 - 2017-08-14

Fixed

• Set proper content type header for the root redirection page.

2.1.11 17.3.0 - 2017-06-01

Fixed

• prometheus_async.aio.web.start_http_server() now passes the loop argument to aiohttp.web.
Application.make_handler() instead of Application’s initializer. This fixes a “loop argument is dep-
recated” warning.

2.1.12 17.2.0 - 2017-03-21

Deprecated

• Using aiohttp older than 0.21 is now deprecated.

Fixed

• prometheus_async.aio.web now supports aiohttp 2.0.

2.1.13 17.1.0 - 2017-01-14

Fixed

• Fix monotonic timer on Python 2. #7

2.1.14 16.2.0 - 2016-10-28

Changed

• When using the aiohttp metrics exporter, create the web application using an explicit loop argument. #6

12 Chapter 2. Project Information

https://github.com/hynek/prometheus-async/issues/7
https://github.com/hynek/prometheus-async/pull/6

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

2.1.15 16.1.0 - 2016-09-23

Changed

• Service discovery deregistration is optional now.

2.1.16 16.0.0 - 2016-05-19

Added

• Initial release.

2.2 License and Credits

prometheus-async is licensed under the Apache License 2. The full license text can be also found in the source code
repository.

2.2.1 Credits

prometheus-async is written and maintained by Hynek Schlawack.

The development is kindly supported by Variomedia AG.

Other contributors can be found in GitHub’s overview.

2.2. License and Credits 13

https://choosealicense.com/licenses/apache-2.0/
https://github.com/hynek/prometheus-async/blob/main/LICENSE
https://github.com/hynek/prometheus-async/blob/main/LICENSE
https://hynek.me/
https://www.variomedia.de/
https://github.com/hynek/prometheus-async/graphs/contributors

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

14 Chapter 2. Project Information

CHAPTER

THREE

INDICES AND TABLES

• genindex

• search

15

prometheus𝑎𝑠𝑦𝑛𝑐𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒22.2.0

16 Chapter 3. Indices and tables

INDEX

C
close() (prometheus_async.aio.web.MetricsHTTPServer

method), 5
close() (prometheus_async.aio.web.ThreadedMetricsHTTPServer

method), 6
ConsulAgent (class in prometheus_async.aio.sd), 6
count_exceptions() (in module

prometheus_async.aio), 4
count_exceptions() (in module prometheus_async.tx),

7

M
MetricsHTTPServer (class in

prometheus_async.aio.web), 5

S
server_stats() (in module

prometheus_async.aio.web), 5
start_http_server() (in module

prometheus_async.aio.web), 4
start_http_server_in_thread() (in module

prometheus_async.aio.web), 5

T
ThreadedMetricsHTTPServer (class in

prometheus_async.aio.web), 5
time() (in module prometheus_async.aio), 3
time() (in module prometheus_async.tx), 7
track_inprogress() (in module

prometheus_async.aio), 4
track_inprogress() (in module prometheus_async.tx),

7

17

	User’s Guide
	Installation and Requirements
	asyncio Support
	Decorator Wrappers
	Metric Exposure
	Service Discovery
	Custom Service Discovery

	Twisted Support
	Decorator Wrappers
	Metric Exposure

	Project Information
	Changelog
	22.2.0 - 2022-05-14
	Deprecated
	Changed
	Fixed

	22.1.0 - 2022-02-15
	Removed
	Added

	19.2.0 - 2019-01-17
	Fixed

	19.1.0 - 2019-01-15
	Changed

	18.4.0 - 2018-12-07
	Removed
	Fixed

	18.3.0 - 2018-06-21
	Fixed

	18.2.0 - 2018-05-29
	Deprecated
	Changed

	18.1.0 - 2018-02-15
	Removed
	Changed

	17.5.0 - 2017-10-30
	Removed
	Added
	Fixed

	17.4.0 - 2017-08-14
	Fixed

	17.3.0 - 2017-06-01
	Fixed

	17.2.0 - 2017-03-21
	Deprecated
	Fixed

	17.1.0 - 2017-01-14
	Fixed

	16.2.0 - 2016-10-28
	Changed

	16.1.0 - 2016-09-23
	Changed

	16.0.0 - 2016-05-19
	Added

	License and Credits
	Credits

	Indices and tables
	Index

