

prometheus-async

Release v22.2.0 (What’s new?).

prometheus-async adds support for asynchronous frameworks to the official Python client [https://github.com/prometheus/client_python] for the Prometheus [https://prometheus.io/] metrics and monitoring system.

Currently asyncio [https://docs.python.org/3/library/asyncio.html] and Twisted [https://twisted.org] on Python 3.7 and later are supported.

It works by wrapping the metrics from the official client:

import asyncio

from aiohttp import web
from prometheus_client import Histogram
from prometheus_async.aio import time

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

@time(REQ_TIME)
async def req(request):
 await asyncio.sleep(1)
 return web.Response(body=b"hello")

Even for synchronous applications, the metrics exposure methods can be useful since they are more powerful than the one shipped with the official client.
For that, helper functions have been added that run them in separate threads (asyncio-only).

The source code is hosted on GitHub [https://github.com/hynek/prometheus-async] and the documentation on Read The Docs [https://prometheus-async.readthedocs.io/].

User’s Guide

	Installation and Requirements

	asyncio Support

	Twisted Support

Project Information

	Changelog

	License and Credits

Indices and tables

	Index

	Search Page

Installation and Requirements

If you just want to instrument an asyncio-based application:

$ python -m pip install -U pip
$ python -m pip install prometheus-async

If you want to expose metrics using aiohttp:

$ python -m pip install -U pip
$ python -m pip install prometheus-async[aiohttp]

If you want to instrument a Twisted application:

$ python -m pip install -U pip
$ python -m pip install prometheus-async[twisted]

Warning

Please do not skip the update of pip, because prometheus-async uses modern packaging features and the installation will most likely fail otherwise.

asyncio Support

The asyncio-related APIs can be found within the prometheus_async.aio package.

Decorator Wrappers

All of these functions take a prometheus_client metrics object and can either be applied as a decorator to functions and methods, or they can be passed an asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] for a second argument.

	
coroutine prometheus_async.aio.time(metric: Observer) → Callable[[Callable[P, R]], Callable[P, R]]

	
coroutine prometheus_async.aio.time(metric: Observer, future: Awaitable[T]) → Awaitable[T]

	Call metric.observe(time) with the runtime in seconds.

Works as a decorator as well as on asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]s.

	Returns

	coroutine function (if decorator) or coroutine.

The most common use case is using it as a decorator:

import asyncio

from aiohttp import web
from prometheus_client import Histogram
from prometheus_async.aio import time

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

@time(REQ_TIME)
async def req(request):
 await asyncio.sleep(1)
 return web.Response(body=b"hello")

	
coroutine prometheus_async.aio.count_exceptions(metric: Incrementer, *, exc: type [https://docs.python.org/3/library/functions.html#type][BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]] = 'BaseException') → Callable[[Callable[P, R]], Callable[P, R]]

	
coroutine prometheus_async.aio.count_exceptions(metric: Incrementer, future: Awaitable[T], *, exc: type [https://docs.python.org/3/library/functions.html#type][BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]] = 'BaseException') → Awaitable[T]

	Call metric.inc() whenever exc is caught.

Works as a decorator as well as on asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]s.

	Returns

	coroutine function (if decorator) or coroutine.

	
coroutine prometheus_async.aio.track_inprogress(metric: Gauge) → Callable[[Callable[P, R]], Callable[P, R]]

	
coroutine prometheus_async.aio.track_inprogress(metric: Gauge, future: Awaitable[T]) → Awaitable[T]

	Call metrics.inc() on entry and metric.dec() on exit.

Works as a decorator, as well on asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]s.

	Returns

	coroutine function (if decorator) or coroutine.

Metric Exposure

prometheus-async offers methods to expose your metrics using aiohttp [https://aiohttp.readthedocs.io/] under prometheus_async.aio.web:

	
coroutine prometheus_async.aio.web.start_http_server(*, addr='', port=0, ssl_ctx=None, service_discovery=None)

	Start an HTTP(S) server on addr:port.

If ssl_ctx is set, use TLS.

	Parameters

	
	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Interface to listen on. Leaving empty will listen on all
interfaces.

	port (int [https://docs.python.org/3/library/functions.html#int]) – Port to listen on.

	ssl_ctx (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]) – TLS settings

	service_discovery (ServiceDiscovery | None) – see Service Discovery

	Return type

	MetricsHTTPServer

Deprecated since version 18.2.0: The loop argument is a no-op now and will be removed in one year by
the earliest.

Changed in version 21.1.0: The loop argument has been removed.

	
prometheus_async.aio.web.start_http_server_in_thread(*, port=0, addr='', ssl_ctx=None, service_discovery=None)

	Start an asyncio HTTP(S) server in a new thread with an own event loop.

Ideal to expose your metrics in non-asyncio Python 3 applications.

For arguments see start_http_server().

	Return type

	ThreadedMetricsHTTPServer

Warning

Please note that if you want to use uWSGI [https://uwsgi-docs.readthedocs.io/] together with start_http_server_in_thread(), you have to tell uWSGI to enable threads using its configuration option [https://uwsgi-docs.readthedocs.io/en/latest/Options.html#enable-threads] or by passing it --enable-threads.

Currently the recommended mode to run uWSGI with --master is broken [https://github.com/unbit/uwsgi/issues/1609] if you want to clean up using atexit [https://docs.python.org/3/library/atexit.html#module-atexit] handlers.

Therefore the usage of prometheus_sync.aio.web together with uWSGI is strongly discouraged.

	
async prometheus_async.aio.web.server_stats(request)

	Return a web response with the plain text version of the metrics.

	Return type

	aiohttp.web.Response [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response]

Useful if you want to install your metrics within your own application:

from aiohttp import web
from prometheus_async import aio

app = web.Application()
app.router.add_get("/metrics", aio.web.server_stats)
your other routes go here.

	
class prometheus_async.aio.web.MetricsHTTPServer(socket, runner, app, https)

	A stoppable metrics HTTP server.

Returned by start_http_server(). Do not instantiate it yourself.

	Variables

	
	socket – Socket the server is listening on. namedtuple of
either (ipaddress.IPv4Address [https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address], port) or
(ipaddress.IPv6Address [https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address], port).

	https (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the server uses SSL/TLS.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid URL to the metrics endpoint.

	is_registered (bool [https://docs.python.org/3/library/functions.html#bool]) – Is the web endpoint registered with a
service discovery system?

	
coroutine close()

	Stop the server and clean up.

	
class prometheus_async.aio.web.ThreadedMetricsHTTPServer(http_server, thread, loop)

	A stoppable metrics HTTP server that runs in a separate thread.

Returned by start_http_server_in_thread(). Do not instantiate it
yourself.

	Variables

	
	socket – Socket the server is listening on. namedtuple of
Socket(addr, port).

	https (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the server uses SSL/TLS.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid URL to the metrics endpoint.

	is_registered (bool [https://docs.python.org/3/library/functions.html#bool]) – Is the web endpoint registered with a
service discovery system?

	
close()

	Stop the server, close the event loop, and join the thread.

Service Discovery

Web exposure is much more useful if it comes with an easy way to integrate it with service discovery.

Currently prometheus-async only ships integration with a local Consul agent using aiohttp.
We do not plan add more.

	
class prometheus_async.aio.sd.ConsulAgent(*, name='app-metrics', service_id=None, tags=(), token=None, deregister=True)

	Service discovery via a local Consul agent.

Pass as service_discovery into
prometheus_async.aio.web.start_http_server()/
prometheus_async.aio.web.start_http_server_in_thread().

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Application name that is used for the name and the service
ID if not set.

	service_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Consul Service ID. If not set, name is used.

	tags (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tags to use in Consul registration.

	token (str [https://docs.python.org/3/library/stdtypes.html#str]) – A consul access token.

	deregister (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to deregister when the HTTP server is
closed.

Custom Service Discovery

Adding own service discovery methods is simple:
all you need is to provide an instance with a coroutine register(self, metrics_server, loop) that registers the passed metrics_server with the service of your choicer and returns another coroutine that is called for de-registration when the metrics server is shut down.

Have a look at our implementations [https://github.com/hynek/prometheus-async/blob/main/src/prometheus_async/aio/sd.py] if you need inspiration or check out the ServiceDiscovery typing.Protocol [https://docs.python.org/3/library/typing.html#typing.Protocol] in the types module [https://github.com/hynek/prometheus-async/blob/main/src/prometheus_async/types.py]

Twisted Support

The Twisted-related APIs can be found within the prometheus_async.tx package.

Decorator Wrappers

	
prometheus_async.tx.time(metric: Observer) → Callable[[Callable[P, D]], Callable[P, D]]

	
prometheus_async.tx.time(metric: Observer, deferred: D) → D

	Call metric.observe(time) with runtime in seconds.

Can be used as a decorator as well as on Deferreds.

Works with both sync and async results.

	Returns

	function or Deferred.

The fact it’s accepting Deferreds is useful in conjunction with twisted.web [https://twistedmatrix.com/documents/current/web/howto/web-in-60/index.html] views that don’t allow to return a Deferred:

from prometheus_client import Histogram
from prometheus_async.tx import time
from twisted.internet.task import deferLater
from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

class DelayedResource(Resource):
 def _delayedRender(self, request):
 request.write("<html><body>Sorry to keep you waiting.</body></html>")
 request.finish()

 def render_GET(self, request):
 d = deferLater(reactor, 5, lambda: request)
 time(REQ_TIME, d.addCallback(self._delayedRender))
 return NOT_DONE_YET

	
prometheus_async.tx.count_exceptions(metric: Incrementer, *, exc: type[BaseException] = <class 'BaseException'>) → Callable[P, C]

	
prometheus_async.tx.count_exceptions(metric: Incrementer, deferred: D, *, exc: type[BaseException] = <class 'BaseException'>) → D

	Call metric.inc() whenever exc is caught.

Can be used as a decorator or on a Deferred.

	Returns

	function (if decorator) or Deferred.

	
prometheus_async.tx.track_inprogress(metric: Gauge) → Callable[P, C]

	
prometheus_async.tx.track_inprogress(metric: Gauge, deferred: D) → D

	Call metrics.inc() on entry and metric.dec() on exit.

Can be used as a decorator or on a Deferred.

	Returns

	function (if decorator) or Deferred.

Metric Exposure

prometheus_client [https://github.com/prometheus/client_python#twisted], the underlying Prometheus client library, exposes a twisted.web.resource.Resource [https://twistedmatrix.com/documents/current/api/twisted.web.resource.Resource.html] – namely prometheus_client.twisted.MetricsResource [https://github.com/prometheus/client_python/blob/master/prometheus_client/twisted/_exposition.py] – that makes it extremely easy to expose your metrics.

from prometheus_client.twisted import MetricsResource
from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

root = Resource()
root.putChild(b"metrics", MetricsResource())

factory = Site(root)
reactor.listenTCP(8000, factory)
reactor.run()

As a slightly more in-depth example, the following exposes the application’s metrics under /metrics and sets up a prometheus_client.Counter [https://github.com/prometheus/client_python#counter] for inbound HTTP requests.
It also uses Klein [https://github.com/twisted/klein] to set up the routes instead of relying directly on twisted.web [https://twistedmatrix.com/documents/current/web/howto/web-in-60/index.html] for routing.

from prometheus_client.twisted import MetricsResource
from twisted.web.server import Site
from twisted.internet import reactor

from klein import Klein

from prometheus_client import Counter

INBOUND_REQUESTS = Counter(
 "inbound_requests_total",
 "Counter (int) of inbound http requests",
 ["endpoint", "method"]
)

app = Klein()

@app.route("/metrics")
def metrics(request):
 INBOUND_REQUESTS.labels("/metrics", "GET").inc()
 return MetricsResource()

factory = Site(app.resource())
reactor.listenTCP(8000, factory)
reactor.run()

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/] and this project adheres to Calendar Versioning [https://calver.org/].

The first number of the version is the year.
The second number is incremented with each release, starting at 1 for each year.
The third number is when we need to start branches for older releases (only for emergencies).

prometheus-async has a very strong backwards-compatibility policy.
Generally speaking, you shouldn’t ever be afraid of updating.

Whenever breaking changes are needed, they are:

	…announced here in the changelog.

	…the old behavior raises a DeprecationWarning for a year (if possible).

	…are done with another announcement in the changelog.

22.2.0 [https://github.com/hynek/prometheus-async/compare/22.1.0...22.2.0] - 2022-05-14

Deprecated

	The prometheus_async.types.IncDecrementer Protocol is deprecated and will be removed in a year.
It was never a public API.
#29 [https://github.com/hynek/prometheus-async/pull/29]

Changed

	Due to improvements of prometheus_client’s type hints, we don’t block them from Mypy anymore.

Fixed

	The type hints for prometheus_async.track_inprogress() now accept prometheus_client.Gauges.
#29 [https://github.com/hynek/prometheus-async/pull/29]

22.1.0 [https://github.com/hynek/prometheus-async/compare/19.2.0...22.1.0] - 2022-02-15

Removed

	Support for Python 2.7, 3.5, and 3.6 has been dropped.

	The loop argument has been removed from prometheus_async.aio.start_http_server().

Added

	Added type hints for all APIs.
#21 [https://github.com/hynek/prometheus-async/pull/21]

	Added support for OpenMetrics [https://openmetrics.io] exposition in prometheus_async.aio.web.server_stats() and thus prometheus_async.aio.web.start_http_server_in_thread().
#23 [https://github.com/hynek/prometheus-async/issues/23]

19.2.0 [https://github.com/hynek/prometheus-async/compare/19.1.0...19.2.0] - 2019-01-17

Fixed

	Revert the switch to decorator.py since it turned out to be a very breaking change.
Please note that the now-current release of wrapt 1.11.0 has a memory leak [https://github.com/GrahamDumpleton/wrapt/issues/128] so you should block it in your lockfile.

Sorry for the inconvenience this has caused!

19.1.0 [https://github.com/hynek/prometheus-async/compare/18.4.0...19.1.0] - 2019-01-15

Changed

	Dropped most dependencies and switched to decorator.py to avoid a C dependency (wrapt) that produces functions that can’t be pickled.

18.4.0 [https://github.com/hynek/prometheus-async/compare/18.3.0...18.4.0] - 2018-12-07

Removed

	prometheus_client 0.0.18 or newer is now required.

Fixed

	Restored compatibility with prometheus_client 0.5.

18.3.0 [https://github.com/hynek/prometheus-async/compare/18.2.0...18.3.0] - 2018-06-21

Fixed

	The HTTP access log when using prometheus_async.start_http_server() is disabled now.
It was activated accidentally when moving to aiohttp’s application runner APIs.

18.2.0 [https://github.com/hynek/prometheus-async/compare/18.1.0...18.2.0] - 2018-05-29

Deprecated

	Passing a loop argument to prometheus_async.aio.start_http_server() is a no-op and raises a DeprecationWarning now.

Changed

	Port to aiohttp’s application runner APIs to avoid those pesky deprecation warnings.
As a consequence, the loop argument has been removed from internal APIs and became a no-op in public APIs.

18.1.0 [https://github.com/hynek/prometheus-async/compare/17.5.0...18.1.0] - 2018-02-15

Removed

	Python 3.4 is no longer supported.

	aiohttp 3.0 or later is now required for aio metrics exposure.

Changed

	python-consul is no longer required for asyncio Consul service discovery.
A plain aiohttp is enough now.

17.5.0 [https://github.com/hynek/prometheus-async/compare/17.4.0...17.5.0] - 2017-10-30

Removed

	prometheus_async.aio.web now requires aiohttp 2.0 or later.

Added

	The thread created by prometheus_async.aio.start_http_server_in_thread() has a human-readable name now.

Fixed

	Fixed compatibility with aiohttp 2.3.

17.4.0 [https://github.com/hynek/prometheus-async/compare/17.3.0...17.4.0] - 2017-08-14

Fixed

	Set proper content type header for the root redirection page.

17.3.0 [https://github.com/hynek/prometheus-async/compare/17.2.0...17.3.0] - 2017-06-01

Fixed

	prometheus_async.aio.web.start_http_server() now passes the loop argument to aiohttp.web.Application.make_handler() instead of Application’s initializer.
This fixes a “loop argument is deprecated” warning.

17.2.0 [https://github.com/hynek/prometheus-async/compare/17.1.0...17.2.0] - 2017-03-21

Deprecated

	Using aiohttp older than 0.21 is now deprecated.

Fixed

	prometheus_async.aio.web now supports aiohttp 2.0.

17.1.0 [https://github.com/hynek/prometheus-async/compare/16.2.0...17.1.0] - 2017-01-14

Fixed

	Fix monotonic timer on Python 2.
#7 [https://github.com/hynek/prometheus-async/issues/7]

16.2.0 [https://github.com/hynek/prometheus-async/compare/16.1.0...16.2.0] - 2016-10-28

Changed

	When using the aiohttp metrics exporter, create the web application using an explicit loop argument.
#6 [https://github.com/hynek/prometheus-async/pull/6]

16.1.0 [https://github.com/hynek/prometheus-async/compare/16.0.0...16.1.0] - 2016-09-23

Changed

	Service discovery deregistration is optional now.

16.0.0 [https://github.com/hynek/prometheus-async/releases/tag/16.0.0] - 2016-05-19

Added

	Initial release.

License and Credits

prometheus-async is licensed under the Apache License 2 [https://choosealicense.com/licenses/apache-2.0/].
The full license text can be also found in the source code repository [https://github.com/hynek/prometheus-async/blob/main/LICENSE].

Credits

prometheus-async is written and maintained by Hynek Schlawack [https://hynek.me/].

The development is kindly supported by Variomedia AG [https://www.variomedia.de/].

Other contributors can be found in GitHub’s overview [https://github.com/hynek/prometheus-async/graphs/contributors].

Index

 C
 | M
 | S
 | T

C

 	
 	close() (prometheus_async.aio.web.MetricsHTTPServer method)

 	(prometheus_async.aio.web.ThreadedMetricsHTTPServer method)

 	
 	ConsulAgent (class in prometheus_async.aio.sd)

 	count_exceptions() (in module prometheus_async.aio)

 	(in module prometheus_async.tx)

M

 	
 	MetricsHTTPServer (class in prometheus_async.aio.web)

S

 	
 	server_stats() (in module prometheus_async.aio.web)

 	
 	start_http_server() (in module prometheus_async.aio.web)

 	start_http_server_in_thread() (in module prometheus_async.aio.web)

T

 	
 	ThreadedMetricsHTTPServer (class in prometheus_async.aio.web)

 	time() (in module prometheus_async.aio)

 	(in module prometheus_async.tx)

 	
 	track_inprogress() (in module prometheus_async.aio)

 	(in module prometheus_async.tx)

 Page not found

Unfortunately we couldn't find the content you were looking for.

 nav.xhtml

 Table of Contents

 		
 prometheus-async

 		
 Installation and Requirements

 		
 asyncio Support

 		
 Decorator Wrappers

 		
 Metric Exposure

 		
 Service Discovery

 		
 Custom Service Discovery

 		
 Twisted Support

 		
 Decorator Wrappers

 		
 Metric Exposure

 		
 Changelog

 		
 22.2.0 - 2022-05-14

 		
 Deprecated

 		
 Changed

 		
 Fixed

 		
 22.1.0 - 2022-02-15

 		
 Removed

 		
 Added

 		
 19.2.0 - 2019-01-17

 		
 Fixed

 		
 19.1.0 - 2019-01-15

 		
 Changed

 		
 18.4.0 - 2018-12-07

 		
 Removed

 		
 Fixed

 		
 18.3.0 - 2018-06-21

 		
 Fixed

 		
 18.2.0 - 2018-05-29

 		
 Deprecated

 		
 Changed

 		
 18.1.0 - 2018-02-15

 		
 Removed

 		
 Changed

 		
 17.5.0 - 2017-10-30

 		
 Removed

 		
 Added

 		
 Fixed

 		
 17.4.0 - 2017-08-14

 		
 Fixed

 		
 17.3.0 - 2017-06-01

 		
 Fixed

 		
 17.2.0 - 2017-03-21

 		
 Deprecated

 		
 Fixed

 		
 17.1.0 - 2017-01-14

 		
 Fixed

 		
 16.2.0 - 2016-10-28

 		
 Changed

 		
 16.1.0 - 2016-09-23

 		
 Changed

 		
 16.0.0 - 2016-05-19

 		
 Added

 		
 License and Credits

 		
 Credits

_static/plus.png

_static/file.png

_static/minus.png

