
prometheus-async
Release UNRELEASED

unknown

Apr 11, 2024





CONTENTS

1 User’s Guide 3

2 Credits 9

3 prometheus-async for Enterprise 11

4 Indices and tables 13

Index 15

i



ii



prometheus-async, Release UNRELEASED

Release UNRELEASED (What’s new?)

prometheus-async adds support for asynchronous frameworks to the official Python client for the Prometheus metrics
and monitoring system.

Currently asyncio and Twisted are supported.

It works by wrapping the metrics from the official client:

import asyncio

from aiohttp import web
from prometheus_client import Histogram
from prometheus_async.aio import time

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

@time(REQ_TIME)
async def req(request):

await asyncio.sleep(1)
return web.Response(body=b"hello")

Even for synchronous applications, the metrics exposure methods can be useful since they are more powerful than
the one shipped with the official client. For that, helper functions have been added that run them in separate threads
(asyncio-only).

The source code is hosted on GitHub and the documentation on Read the Docs.

CONTENTS 1

https://github.com/hynek/prometheus-async/blob/main/CHANGELOG.md
https://github.com/prometheus/client_python
https://prometheus.io/
https://docs.python.org/3/library/asyncio.html
https://twisted.org
https://github.com/hynek/prometheus-async
https://prometheus-async.readthedocs.io/


prometheus-async, Release UNRELEASED

2 CONTENTS



CHAPTER

ONE

USER’S GUIDE

1.1 Installation and Requirements

If you just want to instrument an asyncio-based application:

$ python -Im pip install -U pip
$ python -Im pip install prometheus-async

If you want to expose metrics using aiohttp:

$ python -Im pip install -U pip
$ python -Im pip install prometheus-async[aiohttp]

If you want to instrument a Twisted application:

$ python -Im pip install -U pip
$ python -Im pip install prometheus-async[twisted]

Warning

Please do not skip the update of pip, because prometheus-async uses modern packaging features and the installation
will most likely fail otherwise.

1.2 asyncio Support

The asyncio-related APIs can be found within the prometheus_async.aio package.

1.2.1 Decorator Wrappers

All of these functions take a prometheus_client metrics object and can either be applied as a decorator to functions and
methods, or they can be passed an asyncio.Future for a second argument.

prometheus_async.aio.time(metric: Observer)→ Callable[[Callable[P, R]], Callable[P, R]]
prometheus_async.aio.time(metric: Observer, future: Awaitable[T])→ Awaitable[T]

Call metric.observe(time) with the runtime in seconds.

Works as a decorator as well as on asyncio.Futures.

3

https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future


prometheus-async, Release UNRELEASED

Returns
coroutine function (if decorator) or coroutine.

The most common use case is using it as a decorator:

import asyncio

from aiohttp import web
from prometheus_client import Histogram
from prometheus_async.aio import time

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

@time(REQ_TIME)
async def req(request):

await asyncio.sleep(1)
return web.Response(body=b"hello")

prometheus_async.aio.count_exceptions(metric: Incrementer, *, exc: type[BaseException] =
BaseException)→ Callable[[Callable[P, R]], Callable[P, R]]

prometheus_async.aio.count_exceptions(metric: Incrementer, future: Awaitable[T], *, exc:
type[BaseException] = BaseException)→ Awaitable[T]

Call metric.inc() whenever exc is caught.

Works as a decorator as well as on asyncio.Futures.

Returns
coroutine function (if decorator) or coroutine.

prometheus_async.aio.track_inprogress(metric: Gauge)→ Callable[[Callable[P, R]], Callable[P, R]]
prometheus_async.aio.track_inprogress(metric: Gauge, future: Awaitable[T])→ Awaitable[T]

Call metrics.inc() on entry and metric.dec() on exit.

Works as a decorator, as well on asyncio.Futures.

Returns
coroutine function (if decorator) or coroutine.

1.2.2 Metric Exposure

prometheus-async offers methods to expose your metrics using aiohttp under prometheus_async.aio.web:

async prometheus_async.aio.web.start_http_server(*, addr='', port=0, ssl_ctx=None,
service_discovery=None)

Start an HTTP(S) server on addr:port.

If ssl_ctx is set, use TLS.

Parameters

• addr (str) – Interface to listen on. Leaving empty will listen on all interfaces.

• port (int) – Port to listen on.

• ssl_ctx (ssl.SSLContext) – TLS settings

• service_discovery (ServiceDiscovery | None) – see Service Discovery

4 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://aiohttp.readthedocs.io/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ssl.html#ssl.SSLContext


prometheus-async, Release UNRELEASED

Return type
MetricsHTTPServer

Deprecated since version 18.2.0: The loop argument is a no-op now and will be removed in one year by the
earliest.

Changed in version 21.1.0: The loop argument has been removed.

prometheus_async.aio.web.start_http_server_in_thread(*, port=0, addr='', ssl_ctx=None,
service_discovery=None)

Start an asyncio HTTP(S) server in a new thread with an own event loop.

Ideal to expose your metrics in non-asyncio Python 3 applications.

For arguments see start_http_server().

Return type
ThreadedMetricsHTTPServer

Important: Please note that if you want to use uWSGI together with start_http_server_in_thread(), you have
to tell uWSGI to enable threads using its configuration option or by passing it --enable-threads.

Currently the recommended mode to run uWSGI with --master is broken if you want to clean up using atexit
handlers.

Therefore the usage of prometheus_sync.aio.web together with uWSGI is strongly discouraged.

As of 2023, the uWSGI project declared to only do emergency maintenance, therefore it’s a good idea to migrate away
from it anyway.

async prometheus_async.aio.web.server_stats(request)
Return a web response with the plain text version of the metrics.

Return type
aiohttp.web.Response

Useful if you want to install your metrics within your own application:

from aiohttp import web
from prometheus_async import aio

app = web.Application()
app.router.add_get("/metrics", aio.web.server_stats)
# your other routes go here.

class prometheus_async.aio.web.MetricsHTTPServer(socket, runner, app, https)
A stoppable metrics HTTP server.

Returned by start_http_server(). Do not instantiate it yourself.

Variables

• socket – Socket the server is listening on. namedtuple of either (ipaddress.
IPv4Address, port) or (ipaddress.IPv6Address, port).

• https (bool) – Whether the server uses SSL/TLS.

• url (str) – A valid URL to the metrics endpoint.

• is_registered (bool) – Is the web endpoint registered with a service discovery system?

1.2. asyncio Support 5

https://uwsgi-docs.readthedocs.io/
https://uwsgi-docs.readthedocs.io/en/latest/Options.html#enable-threads
https://github.com/unbit/uwsgi/issues/1609
https://docs.python.org/3/library/atexit.html#module-atexit
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


prometheus-async, Release UNRELEASED

async close()

Stop the server and clean up.

class prometheus_async.aio.web.ThreadedMetricsHTTPServer(http_server, thread, loop)
A stoppable metrics HTTP server that runs in a separate thread.

Returned by start_http_server_in_thread(). Do not instantiate it yourself.

Variables

• socket – Socket the server is listening on. namedtuple of Socket(addr, port).

• https (bool) – Whether the server uses SSL/TLS.

• url (str) – A valid URL to the metrics endpoint.

• is_registered (bool) – Is the web endpoint registered with a service discovery system?

close()

Stop the server, close the event loop, and join the thread.

1.2.3 Service Discovery

Web exposure is much more useful if it comes with an easy way to integrate it with service discovery.

Currently prometheus-async only ships integration with a local Consul agent using aiohttp. We do not plan add more.

class prometheus_async.aio.sd.ConsulAgent(*, name='app-metrics', service_id=None, tags=(),
token=None, deregister=True)

Service discovery via a local Consul agent.

Pass as service_discovery into prometheus_async.aio.web.start_http_server()/
prometheus_async.aio.web.start_http_server_in_thread().

Parameters

• name (str) – Application name that is used for the name and the service ID if not set.

• service_id (str) – Consul Service ID. If not set, name is used.

• tags (tuple) – Tags to use in Consul registration.

• token (str) – A consul access token.

• deregister (bool) – Whether to deregister when the HTTP server is closed.

Custom Service Discovery

Adding own service discovery methods is simple: All you need is to provide an instance with a coroutine
register(self, metrics_server, loop) that registers the passed metrics_server with the service of your
choicer and returns another coroutine that is called for de-registration when the metrics server is shut down.

Have a look at our implementations if you need inspiration or check out the ServiceDiscovery typing.Protocol
in the types module

6 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/hynek/prometheus-async/blob/main/src/prometheus_async/aio/sd.py
https://docs.python.org/3/library/typing.html#typing.Protocol
https://github.com/hynek/prometheus-async/blob/main/src/prometheus_async/types.py


prometheus-async, Release UNRELEASED

1.3 Twisted Support

The Twisted-related APIs can be found within the prometheus_async.tx package.

1.3.1 Decorator Wrappers

prometheus_async.tx.time(metric: Observer)→ Callable[[Callable[P, D]], Callable[P, D]]
prometheus_async.tx.time(metric: Observer, deferred: D)→ D

Call metric.observe(time) with runtime in seconds.

Can be used as a decorator as well as on Deferreds.

Works with both sync and async results.

Returns
function or Deferred.

The fact it’s accepting Deferreds is useful in conjunction with twisted.web views that don’t allow to return a
Deferred:

from prometheus_client import Histogram
from prometheus_async.tx import time
from twisted.internet.task import deferLater
from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

REQ_TIME = Histogram("req_time_seconds", "time spent in requests")

class DelayedResource(Resource):
def _delayedRender(self, request):
request.write("<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def render_GET(self, request):
d = deferLater(reactor, 5, lambda: request)
time(REQ_TIME, d.addCallback(self._delayedRender))
return NOT_DONE_YET

prometheus_async.tx.count_exceptions(metric: Incrementer, *, exc: type[BaseException] = <class
'BaseException'>)→ Callable[P, C]

prometheus_async.tx.count_exceptions(metric: Incrementer, deferred: D, *, exc: type[BaseException] =
<class 'BaseException'>)→ D

Call metric.inc() whenever exc is caught.

Can be used as a decorator or on a Deferred.

Returns
function (if decorator) or Deferred.

prometheus_async.tx.track_inprogress(metric: Gauge)→ Callable[P, C]
prometheus_async.tx.track_inprogress(metric: Gauge, deferred: D)→ D

Call metrics.inc() on entry and metric.dec() on exit.

Can be used as a decorator or on a Deferred.

1.3. Twisted Support 7

https://twistedmatrix.com/documents/current/web/howto/web-in-60/index.html


prometheus-async, Release UNRELEASED

Returns
function (if decorator) or Deferred.

1.3.2 Metric Exposure

prometheus_client, the underlying Prometheus client library, exposes a twisted.web.resource.Resource – namely
prometheus_client.twisted.MetricsResource – that makes it extremely easy to expose your metrics.

from prometheus_client.twisted import MetricsResource
from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor

root = Resource()
root.putChild(b"metrics", MetricsResource())

factory = Site(root)
reactor.listenTCP(8000, factory)
reactor.run()

As a slightly more in-depth example, the following exposes the application’s metrics under /metrics and sets up a
prometheus_client.Counter for inbound HTTP requests. It also uses Klein to set up the routes instead of relying
directly on twisted.web for routing.

from prometheus_client.twisted import MetricsResource
from twisted.web.server import Site
from twisted.internet import reactor

from klein import Klein

from prometheus_client import Counter

INBOUND_REQUESTS = Counter(
"inbound_requests_total",
"Counter (int) of inbound http requests",
["endpoint", "method"]

)

app = Klein()

@app.route("/metrics")
def metrics(request):

INBOUND_REQUESTS.labels("/metrics", "GET").inc()
return MetricsResource()

factory = Site(app.resource())
reactor.listenTCP(8000, factory)
reactor.run()

8 Chapter 1. User’s Guide

https://github.com/prometheus/client_python#twisted
https://github.com/prometheus/client_python/blob/master/prometheus_client/twisted/_exposition.py
https://github.com/prometheus/client_python#counter
https://github.com/twisted/klein
https://twistedmatrix.com/documents/current/web/howto/web-in-60/index.html


CHAPTER

TWO

CREDITS

prometheus-async is written and maintained by Hynek Schlawack.

The development is kindly supported by my employer Variomedia AG, prometheus-async’s Tidelift subscribers, and
all my amazing GitHub Sponsors.

9

https://hynek.me/
https://www.variomedia.de/
https://tidelift.com/?utm_source=lifter&amp;utm_medium=referral&amp;utm_campaign=hynek
https://github.com/sponsors/hynek


prometheus-async, Release UNRELEASED

10 Chapter 2. Credits



CHAPTER

THREE

PROMETHEUS-ASYNC FOR ENTERPRISE

Available as part of the Tidelift Subscription.

The maintainers of prometheus-async and thousands of other packages are working with Tidelift to deliver commercial
support and maintenance for the open source packages you use to build your applications. Save time, reduce risk, and
improve code health, while paying the maintainers of the exact packages you use. Learn more.

11

https://tidelift.com/?utm_source=lifter&amp;utm_medium=referral&amp;utm_campaign=hynek


prometheus-async, Release UNRELEASED

12 Chapter 3. prometheus-async for Enterprise



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• search

13



prometheus-async, Release UNRELEASED

14 Chapter 4. Indices and tables



INDEX

C
close() (prometheus_async.aio.web.MetricsHTTPServer

method), 5
close() (prometheus_async.aio.web.ThreadedMetricsHTTPServer

method), 6
ConsulAgent (class in prometheus_async.aio.sd), 6
count_exceptions() (in module

prometheus_async.aio), 4
count_exceptions() (in module prometheus_async.tx),

7

M
MetricsHTTPServer (class in

prometheus_async.aio.web), 5

S
server_stats() (in module

prometheus_async.aio.web), 5
start_http_server() (in module

prometheus_async.aio.web), 4
start_http_server_in_thread() (in module

prometheus_async.aio.web), 5

T
ThreadedMetricsHTTPServer (class in

prometheus_async.aio.web), 6
time() (in module prometheus_async.aio), 3
time() (in module prometheus_async.tx), 7
track_inprogress() (in module

prometheus_async.aio), 4
track_inprogress() (in module prometheus_async.tx),

7

15


	User’s Guide
	Installation and Requirements
	asyncio Support
	Decorator Wrappers
	Metric Exposure
	Service Discovery
	Custom Service Discovery


	Twisted Support
	Decorator Wrappers
	Metric Exposure


	Credits
	prometheus-async for Enterprise
	Indices and tables
	Index

